Dynamic Typing Vs Static Typing Vs Weak Typing Vs Strong Typing

A common misconception is that dynamic typing (as in variable types… not as in your keyboard…) is synonymous with weak typing and that static typing is synonymous with strong typing. This is an untrue assumption. Dynamic typing is the opposite of static typing and weak typing is the opposite of strong typing and both of these sets represent entirely different concepts.

Dynamic Vs Static Typing

A statically typed language is one in which you must declare all variable types before compilation (and in a few rare cases, interpretation). Types are checked at compilation thus allowing the compiler to detect any errors with your variable types. A dynamically typed language, on the other hand, will check your variable types at run time. Dynamically typed languages are thus able to dynamically assign variable types depending on the input. This often saves programmer time and makes for simpler code.

While a statically typed language can save system resources by compiling the code ahead of time thus eliminating the need for type-checking and resource allocation at run time, there are some memory advantages to a dynamically typed language. A dynamically typed language can (in some cases) save some memory as the interpreter is able to assign only what is necessary to fit the data entered. In a statically typed language, on the other hand, the programmer must predict ahead of time the maximum amount of space that some variable input (for example, from a file or database entry) will consume and reserve that space ahead of time. If a smaller amount of data enters the program, any extra memory that has been reserved for this data is wasted. Overall, however, a program written in a statically typed language is typically more efficient than a program written in a dynamically typed language. The advantages that a dynamically typed language offers primarily have to do with making the programmer’s job faster and easier (at the expense of some extra system resources). In many circumstances in our modern world, this trade off is well worth it.

Weak Typing Vs. Strong Typing

The first thing that should be noted when talking about a weakly typed vs strongly typed language is that there is not really a rigorous technical definition for either term; therefore, using such terms should be avoided altogether. However, I include them here for the sake of contrasting the common usage of these terms with that of dynamic/static typing.

A strongly typed language is generally regarded as a language in which variables must be explicitly converted when comparing two variables of a different type. In other words 1 + “1” is an impossible operation and 1==”1″ is an impossible comparison. In general, in a strongly typed language both of these statements would return an error. In a strongly typed language variables of different types must be explicitly converted in order to perform operations and/or comparisons.

A weakly typed language, on the other hand, will usually implicitly convert variables of different types when the programmer attempts a comparison or operation on them. Usually weakly typed languages have elaborate rules (though often consistent with many other weakly typed languages) stating how conversions occur implicitly (or automatically, without the programmer needing to explicitly state that a variable is to be converted). For example, the operation 1.0 + 1 will likely return a float value in a weakly typed language, whereas it would likely return an error in a language that is considered to be strongly typed. This is because technically this statement is comparing a floating point number with an integer.

Dynamically Strong and Statically Weak

It is also a misconception that a dynamically typed language must also be weakly typed and that a statically typed language must be strongly typed. This is also untrue. Python is a good counterexample to the first scenario. Python is a dynamically typed language; however, it is also generally considered to be strongly typed. On the other hand, while both C and C++ are statically typed, they are also considered to be weakly typed; that is, there are many ways in which variable conversions occur where the programmer does not have to explicitly direct the program to make such a conversion (1.0/1, for example, will return a floating point number).

Dynamically Compiled and Statically Interpreted

Finally, I should also note that, while dynamically typed languages are generally interpreted and statically typed languages are generally compiled, this is certainly not a requirement either. Many dynamically typed languages can be compiled, for example, Python and Ruby. However, when these languages are compiled they are still not typically as efficient as their statically typed counterparts due to the extra overhead of runtime type checking.

While knowing the differences in these terms will not make or break you as a programmer, it can be useful to understand the differences so you properly understand what is going on “under the hood” with your language. It is also important to understand these definitions so you can properly understand and possibly even partake in discussions with your peers and coworkers and speak intelligently about such things to those around you.

Dynamic Typing Vs Static Typing Vs Weak Typing Vs Strong Typing